TOSHIBA MOS MEMORY PRODUCT

65,536 WORD × 8 BIT N-MOS UV ERASABLE AND EL-ECTRICALLY PROGRAMMABLE READ ONLY MEMORY PRELIMINARY

TMM27512D-20,TMM27512D-200 TMM27512D-25,TMM27512D-250

DESCRIPTION

The TMM27512D is a $65,536 \text{ word } \times 8$ bit ultraviolet light erasable and electrically programmable read memory.

For read operation, the TMM27512D's access time is 200ns/250ns. The TMM27512D operates from a single 5-volt power supply and has a low power standby mode which

FEATURES

	-20	-25	-200	-250	
Vcc	5V±	5V±5%		10%	
tacc	200ns	250ns	200ns	250ns	
lcc2	120	120mA)mA	
lcc1	35	mA	40mA		

PIN CONNECTION (TOP VIEW)

A15 🗖	$\overline{}$	28	Ь	Vac
	2	27	F	•CC
A7 0	~	26	F	A13
	о 4	25	F	V0
	т Б	24	5	A0
	6	22	H	
	~	~0	Ľ	ATT
A3 L	7	22	μ	OE/VPP
A2 🗖	8	21		A10
Al 🗖	9	20		CE
A0 🗖	10 ·	19		07
00 🗖	11	18	Þ	06
01 🗖	12	17	Þ	05
02 🗖	13	16	Þ	04
J ND 🗖	14	15		03

PIN NAMES

A ₀ ~A ₁₅	Address Inputs
O ₀ ~O ₇	Outputs (Inputs)
ĈĒ	Chip Enable Input
OE/V _{PP}	Output / Program
	Enable Supply
	Input Voltage
Vcc	Power Supply Voltage (+5V)
GND	Ground

reduces power dissipation without increasing access time. The standby mode is achieved by applying a TTL-high level signal to the $\overline{\text{CE}}$ input. For program operation, the programming is achieved by using the high speed prgramming mode. The TMM27512D is fabricated with N-channel silicon double layer gate MOS technology.

- Full static operation
- High speed programming mode
- Inputs and outputs TTL compatible
- Pin compatible with i27512
- Standard 28 pin DIP cerdip package

MODE SELECTION

PIN MODE	CE (20)	OE/ V _{PP} (22)	Vcc (28)	O₀~O, (11~13, 15~19)	POWER
Read	L	L		Data Out	Activo
Output Deselect	*	H 5V		High Impedance	Active
Standby	н	*		High Impedance	Standby
Program	L	Vpp		Data In	
Program Inhibit	н	Vpp	6V	High Impedance	Active
Program Verify	L	L		Data Out	

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Vcc Power Supply Voltage	-0.6~7.0	V
Vpp	Program Supply Voltage	-0.6~14.0	V
Vin	Input Voltage	-0.6~7.0	V
Vi/o	Input/Output Voltage	-0.6~7.0	V
Po	Power Dissipation	1.5	w w
TSOLDER	Soldering Temperature • Time	260 • 10	*C•sec
Pstg	Storage Temperature	-65~125	°C
TOPR	Operating Temperature	0~70	°C

READ OPERATION

D. C. AND RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	TMM27512D-20/25	TMM27512D-200/250
Та	Operating Tamperature	0~70°C	0~70°C
Vcc	Vcc Power Supply Voltage	5V±5%	5V±10%

D. C. AND OPERATING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION		MIN.	TYP.	MAX.	UNIT
i lu	Input Current	VIN=0~Vcc				±10	μA
llo	Output Leakage Current	Vout=0.4~Vcc				±10	μA
land 1	Supply Current (Standby)		-20/25	-	—	35	m۸
Icci Supply Current (Standby)		CE=VIH	-200/250		_	40	
	Supply Current (Active)		-20/25	— .		120	~^^
ICC2	Supply Current (Active)	CE=VIL	-20/250		-	130	- ma
Vін	Input High Voltage			2.0	-	Vcc+1.0	V
VIL	Input Low Voltage			-0.3		0.8	V
Vон	Output High Voltage	$I_{OH} = -400 \mu A$		2.4	—,	-	V
Vol	Output Low Voltage	IoL=2.1mA			.—	0.4	V
IPP1	VPP Current	Vpp=0~Vcc+0.6			—	±10	μA

A. C: CHARACTERISTICS

SYMBOL		TMM2751	2D-20/200	TMM2751	LINUT	
	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
tacc	Address Access Time		200	_	250	ns
tce	CE to Output Valid		200	—	250	ns
toe	OE to Output Valid	-	70	—	100	ns
tDF1	CE to Output in High-Z	0	60	0	90	ns
tDF2	OE to Output in High-Z	0	60	0	90	ns
tон	Output Data Hold Time	0	_	0		ns

A. C. TEST CONDITIONS

Output Load

Input Pulse Levels

: 1 TTL Gate and CL=100pF

- Input Pulse Rise and Fall Times
- : 0.45V to 2.4V

: 10ns Max.

- Timing Measurement Reference Level
- : Inputs 0.8V and 2.0V, Outputs 0.8V and 2.0V

CAPACITANCE * (Ta=25°C, f=1MHz)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
CIN1	Input Capacitance	VIN=OV	-	4	6	pF
CIN2	OE/V _{PP} Input Capacitance	VIN=OV	-	50	60	pF
Соит	Output Capacitance	Vour=OV	—	8	12	pF

* This paramater is periodically sampled and is not 100% tested.

TIMING WAVEFORMS (READ)

PROGRAM OPERATION

D. C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Vін	Input High Voltage	2.0	_	Vcc+1.0	V
VIL	Input Low Voltage	-0.3	_	0.8	V
Vcc	Vcc Power Supply Voltage	5.75	6.0	6.25	V
Vpp	VPP Power Supply Voltage	12.0	12.5	13.0	V

D. C. and OPERATING CHARACTERISTICS (Ta=25±5*C, Vcc=6V±0.25V, VpP=12.5V±0.5V)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
lu	Input Current	V _{IN} =0~V _{CC}			±10	μA
Vон	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	_	—	V
Vol	Outpu Low Voltage	I _{OL} =2.1mA	-	-	0.4	V
Icc	Vcc Supply Current	_ ·	—	_	130	mA
IPP2	VPP Supply Current	V _{PP} =13.0V	_	-	50	mA
Vid	A9 Auto Select Voltage	_	11.5	12.0	12.5	V

A. C. PROGRAMMING CHARACTERISTICS (Ta=25±5°C, Vcc=6V±0.25V, Vpp=12.5V±0.5V)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
tas	Address Setup Time		2		-	μS
tан	Address Hold Time	· _	2		-	μS
toes	OE/VPP Setup Time	_	2		[`]	μS
toeн	OE/V _{PP} Hold Time	_	2	-	-	μS
t PRT	OE/V _{PP} Pulse Rise Time		50	-	-	μs
tos	Data Setup Time	-	2	_	-	μS
tон	Data Hold Time	-	2	—	-	μs
tvr	OE/VPP Recovery Time	-	2	-		μS
tvcs	Vcc Setup Time	_	2	—	-	μS
tew	Initial Program Pulse Width	$\overline{CE} = V_{IL}, \ \overline{OE}/V_{PP} = V_{PP}$	0.95	1	1.05	ms
topw	Overprogram Pulse Width	Note 1	2.85	3	78.75	ms
tov	Data Valid from CE	OE/VPP=VIL		-	1	μS
tor	CE to Output in High-Z	OE/V _{PP} =V _{IL}	-		130	ns

A. C. TEST CONDITIONS

- : 1 TTL Gate and CL (100pF)
- Input Pulse Rise and Fall Times

Output Load

Input Pulse Levels

- : 10ns Max. : 0.45V to 2.4V
- Timing Measurement Reference Level
- : Input 0.8V and 2.0V, Output 0.8V and 2.0V

TIMING WAVEFORMS (PROGRAM)

$(V_{CC}=6V\pm0.25V, V_{PP}=12.5V\pm0.5V)$

Note: (1) V_{CC} must be applied simultaneously with or before V_{PP} and cut off simultaneously with or after V_{PP} .

- (2) Removing the device from the socket and setting the device in the socket with Vpp=12.5V may cause permanent damage to the device.
- (3) The Vpp supply voltage is permitted up to 14V for program operation; Voltages over 14V should be applied to the Vpp terminal. When the switching pulse voltage is applied to the Vpp terminal, the overshoot voltage of its pulse should not exceed 14V.

ERASURE CHARACTERISTICS

The TMM27512D's erasure is achieved by applying shortwave ultraviolet light with a wavelength of 2537Å (Angstroms) through the transparent window of the chip.

The integrated dose (ultraviolet light intensity $[w/cm^2] \times exposure time [sec.])$ for erasure should be a minimum of 15 $[w \cdot sec/cm^2]$.

When the Toshiba GL-15 sterilizing lamp is used and the device is exposed at a distance of 1cm from the lamp surface, erasure will be achieved within 60 minutes.

Using a commercial lamp with an ultraviolet light inten-

sity of 12000 $[\mu w/cm^2]$ reduces the exposure time to about 20 minutes. (In this case, the integrated dose is 12000 $[\mu w/cm^2] \times (10 \times 60)$ [sec] $\approx 15 \ [w \cdot sec/cm^2]$.)

The TMM27512D's erasure begins to occur when exposed to light with wavelengths shorter than 4000Å. Sunlight and flourescent lamps both include $3000 \sim 4000$ Å wavelength components. Therefore when used under such lighting for extended periods of time, opaque seals-Toshiba EPROM Protect Seal AC901-are available

OPERATION INFORMATION

The TMM27512D's six operation modes are listed in the following table. Mode selection can be achieved by applying TTL level signal to all inputs.

MODE	PIN NAMES(NUMBER)	CE (20)	0E/V PP (22)	V _{cc} (28)	$O_0 \sim O_7$ (11~13, 15~19)	POWER
Read Operation (Ta=0~70°C)	Read	L	L		Data Out	Active
	Output Deselect	*	Н	5V	High Impedance	Active
	Standby	Н	*		High Impedance	Standby
Program Operation (Ta = $25 \pm 5^{\circ}$ C)	Program	L.	VPP		Data In	Active
	Program Inhibit	Н	Vpp	6V	High Impedance	Active
	Program Verify	L	L		Data Out	Active

Note : H ; VIH, L ; VIL, * ; VIH or VIL

READ MODE

The TMM27512D has two control functions. The chip enable (\overline{CE}) controls the operation power and should be used for device selection.

The output enable (\overline{OE}) controls the output buffers, independent of device selection.

Assuming that $\overline{CE=OE}=V_{IL}$, the output data is valid at the outputs after address access time from stabilizing of all

OUTPUT DESELECT MODE

With $\overline{CE}=V_{IH}$ or $\overline{OE}=V_{IH}$, outputs will be in a high impedance state, so two or more TMM27512D's can be

addressess.

The \overline{CE} to output valid (t_{CE}) is equal to the address access time (t_{ACC}).

Assuming that $\overline{CE}=V_{IL}$, and all addresses are valid, the output data is valid at the outputs after t_{OE} from the falling edge of \overline{OE} .

connected together on a common bus line.

When \overline{CE} is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TMM27512D has a low power standby mode controlled by the $\overline{\text{CE}}$ signal.

By applying a high level to the $\overline{\text{CE}}$ input, the TMM27512D

PROGRAM MODE

Initially, when received by customers, all bits of the TMM27512D are in the "1" state which is the erased state. The programming operation introduces "Os" data into the desired bit locations by electrical programming.

is placed in the standby mode which reduces 70% of the operating current. The outputs are in a high impedance state, independent of the \overline{OE} inputs.

The TMM27512D is in the programming mode when the $\overline{\text{OE}}/\text{Vpp}$ input is at 12.5V and $\overline{\text{CE}}$ is at TTL-Low level

The TMM27512D can be programmed at any location, anytime, either individually, sequentially or at random.

PROGRAM VERIFY MODE

The verify mode verifies that desired data is correctly programmed on the programmed bits.

PROGRAM INHIBIT MODE

Under the condition that the program voltage (+12.5V) is applied to Vpp terminal, a TTL high level \overline{CE} input inhibits the TMM27512D from being programmed.

Programming of two or more TMM27512D's in parallel

HIGH SPEED PROGRAMMING MODE

The program time can be greatly decreased by using this high speed programming mode.

This high speed programming mode is performed at V_{CC} =6.0V and $\overrightarrow{OE}/V_{PP}$ =12.5V

The programming is achieved by applying a single TTL low level 1ms pulse to the \overline{CE} input after addresses and data are stable. The programmed data is then verified by using the Program Verify Mode.

If the programmed data is not correct, another program

The verify is accomplished with \overline{OE}/V_{PP} at V_{IL} and at \overline{CE} at V_{IL} .

with different data is easily accomplished: all inputs except for \overline{CE} are commonly connected, a TTL Low level program pulse is applied to the \overline{CE} of the desired device only, and TTL high level signals are applied to the other devices.

pulse of 1ms is applied and the programmed data is reverified. This should be repeated until the programmed data is correct. (max. 25 times)

After correctly programming the selected address, an additional program pulse with width 3 times that needed for initial programming is applied.

When programming has been completed, the data in all addresses should be verified with V_{CC} =5V.

HIGH SPEED PROGRAM MODE FLOW CHART

ELECTRIC SIGNATURE MODE

Electric signature mode allows a code to be read from the TMM27512D which identifies its manufacture and device type.

The programming equipment may be used to read out the manufacturer code and device code from the TMM27512D by using this mode before program operation and automatically set program voltage (Vpp) and algorithm.

Electric Signature mode is set up when 12V is applied to

address line A9 and the rest of address lines are set to V_{IL} in read operation. Data output under these conditions is the manufacturer code. Device code is identified when address A0 is set to V_{IH} . These two codes possess an odd parity with the parity bit of MSB (07).

The following table shows electric signature of the TMM27512D.

PINS	A₀ (10)	O, (19)	O₅ (18)	O₅ (17)	O, (16)	O ₃ (15)	O ₂ (13)	O ₁ (12)	O ₀ (11)	HEX. DATA
Manufacture Code	ViL	1	0	0	1	1	0	0	0	98
Device Code	Vін	0	0	0	1	0	1	0	1	15

Notes : $A9 = 12V \pm 0.5V$

A1~A8, A10~A15, CE, OE=VIL

OUTLINE DRAWINGS

- Note: 1. Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect No.1 and No.28 leads.
 - 2. This value is measured at the end of leads.
 - 3. All dimensions are in milimeters.

Toshiba does not assume any responsibility for use of any circuitry described : no circuit patent licenses are implied, and Toshiba reserves the right, at any time Note without notice, to change said circuitry. C May, 1986 Toshiba Corporation